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The questions for this solution guide can be found here.

Solution 1. (E) Two applications of L’Hopital’s rule:

lim
x→0

cos(3x)− 1

x2
= lim

x→0

−3 sin(3x)

2x
= lim

x→0

−9 cos(3x)

2
=

−9

2
.

Solution 2. (C) Here’s how I see it.

We are given DF = 2. The triangle ∆DFG is a 30-60-90 triangle, making FG = 2
√
3.

Hence one side of the triangle is 4
√
3. Using the general formula for the area of an equilateral

triangle, s2
√
3/4, we obtain the area is 12

√
3.

It turns out there is an easy formula: for any triangle, the radius of the inscribed circle is
equal to 2A/P , where A and P are the area and perimeter of the triangle, respectively. Since
A/P is a fixed ratio for an equilateral triangle, we have a special formula r = s/2

√
3 for an

equilateral triangle. You can solve the above problem using this (very esoteric) method.

Solution 3. (D) Using u-substitution, let u = log x so that du = 1/x dx. This gives∫ e−2

e−3

1

x log x
dx =

∫ −2

−3

1

u
du = log u

∣∣∣−2

−3
= log(−2)− log(−3) = log(2/3).

Solution 4. (A) We know that dim(V +W ) = dimV +dimW −dim(V ∩W ). The lefthand
side of that equation is at most 7, and we know that dimV + dimW = 8. Therefore
dim(V ∩W ) must be at least 1.

Solution 5. (E) We can quickly count off the pairs that are not permissible. Out of 100
potential pairs, we cannot choose (1,1), (2,4), (3,9), (4,2), and (9,3). That leaves 95/100.

Solution 6. (C) Just raise everything to the sixth power:

(21/2)6 = 8, (31/3)6 = 9, (61/6)6 = 6.

Since f(x) = x6 preserves inequalities, this gives us the order.
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Solution 7. (C) We have to do some graphical integration to determine the solution. Cer-
tainly f(2) > f(0) since we have added positive area on [0, 2]. And f(4) < f(2) since we
have added negative area on [2, 4]. A quick inspection shows that the semicircle of radius
one (f(2) − f(4)) is far smaller than the quarter-ellipse area (f(2) − f(0)). Therefore the
proper ordering is f(0) < f(4) < f(2).

Solution 8. (B) Remember that a group necessarily has inverses. Going down the list,
Z \ {0} definitely does not have all multiplicative inverses. We can stop at this point.

Solution 9. (A) The information given tells us that we are concave up at x = −1 and
concave down on (0, 2). We also have a maximum, minimum, or saddle point at x = 0.
Going through our options, (A) is suitable and we can stop there. The other graphs can be
checked for their particular issues.

Solution 10. (A) Squaring both sides, we can fiddle around a bit to determine what we’re
actually dealing with.

(x+ 3)2 + (y − 2)2 = (x− 3)2 + y2 =⇒ (x+ 3)2 − (x− 3)2 = y2 − (y − 2)2

=⇒ 12x = 4y + 4.

That gives us a line.

Solution 11. (B) Since we are rotating around the y-axis, we should phrase things in terms
of functions f(y).

It’s easy to see that our integral will run from y = 0 to y = 1. The righthand function is
x =

√
y and the lefthand function is x = y. The integral we must perform is

π

∫ 1

0

(
√
y)2 − y2 dy = π

∫ 1

0

y − y2 dy = π
(
y2/2− y3/3

) ∣∣∣1
0
= π(1/6− 0) = π/6.

Alternatively, we can use the method of cylindrical shells. Our integral will run from x = 0
to x = 1, so the volume is given by

2π

∫ 1

0

x(x− x2) dx = 2π

∫ 1

0

x2 − x3 dx = 2π(x3/3− x4/4)
∣∣∣1
0
= 2π · (1/12− 0) = π/6

giving us the same answer.

Solution 12. (B) Any group of prime order is necessarily cyclic, and hence there is only one
up to isomorphism. This limits are choices to (B), (C), and (E). But there are two groups
of order 9 (at least): Z/3× Z/3 and Z/9. This makes (B) our only option.
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Solution 13. (D) The maximum value of f(0) will be obtained when f ′(x) = −1 constantly.
That would make f(0) = 5 + 3 = 8.

Solution 14. (B) Evaluating that integral at x = c gives 0. Therefore we would also have
3c5 + 96 = 0. A quick calculation shows c = −2.

Solution 15. (A) For a composition of functions, if the first function isn’t one-to-one, there’s
no way the composite is. It’s worth mentioning here that the opposite is true for onto: the
second function had better be onto.

Solution 16. (B) Put another way, C = A XOR B. If C is false, than either both A and B
are true or both A and B are false. (D) and (E) both work, but they’re not necessary. (B)
is the only one that must be true.

Solution 17. (B) We should see if (D) or (E) has more than 3 solutions to begin with. (E)
only has one solution, at x = 0, as the righthand side gets arbitrarily close to zero as x gets
large but secx is bounded away from the x-axis. (D) doesn’t have any real solutions at all.
(C) also only has one solution.

That leaves (A) and (B). (B) is equivalent to x2 + 4x− 15 = 0, and we can calculate the
discriminant is b2 − 4ac = 96 > 0. Therefore it has two real solutions. For (A), we need to
solve x3 + x − 10 = 0. Its discriminant (which is worth reviewing) is −4c3 − 27d2. In our
case, we can see the discriminant is −2704 < 0. Therefore this polynomial has only one real
root.

Note: this took a while, and the easiest way to do it (I could see) was using the discriminant
of a cubic polynomial.

Solution 18. (A) We should remember some of our power series. Looking at the solutions,
it would be good to recall that

1

1− x
=

∞∑
n=0

xn.

So f(x) is the integral of the above power series, so f ′(x) is precisely that.

Solution 19. (E) Let us represent z = a+ bi. Then our limit becomes

lim
(a,b)→0

(a− bi)2

(a+ bi)2
= lim

(a,b)→0

a2 − b2 − 2abi

a2 − b2 + 2abi
.

If we let a = 0 (for instance), it is easy to see that the limit is equal to 1. However, if we let
a = b, then our limit becomes

lim
a→0

−2a2i

2a2i
= −1.

Therefore the limit does not exist.
Alternatively, using the polar form of complex numbers, we have z = reiθ and z = re−iθ.

Thus

lim
z→0

(z)2

z2
= lim

r→0

r2e−2iθ

r2e2iθ
= lim

r→0
e−4iθ

But this last limit no longer depends on r, so is the value e−4iθ. But θ was a variable, so the
limit depends on the angle θ at which one approaches 0 ∈ C. Therefore it does not exist.
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Solution 20. (E) This limit looks suspiciously like a derivative. Indeed, noticing that
e = g(0), then we could rewrite this as

lim
x→0

g(g(x))− g(g(0))

x− 0
.

That is, the derivative of g(g(x)) at x = 0. By the chain rule, this is g′(0) ∗ g′(g(0)).
Computing, g′(x) = 2e2x+1, so g′(0) = 2e and g′(e) = 2e2e+1. That makes our answer
4e2e+1+1.

Solution 21. (B) We have a symmetric domain here, so for an odd function (e.g. −f(x) =
f(−x)) its integral is zero. The entire term

√
1 + t2 sin3 t cos3 t is an odd function because

sin3 t is odd and the other two functions are even, so its integral amounts to nothing. There-
fore the entire integral is equal to∫ π/4

−π/4

cos t dt = sin t
∣∣∣π/4
−π/4

=
√
2/2 +

√
2/2 =

√
2.

Solution 22. (C) It looks like our x-coordinates are running over [−1, 1], with y depending
on x and z depending on y. To find the volume of the solid, we just need to integrate the
constant function 1. We must therefore compute∫ 1

−1

∫ 2−x2

x2

∫ y+3

0

1 dz dy dx =

∫ 1

−1

∫ 2−x2

x2

y + 3 dy dx

=

∫ 1

−1

(
(2− x2)2/2 + 3(2− x2)

)
−
(
(x2)2/2 + 3(x2)

)
dx

=

∫ 1

−1

8− 8x2 dx

= 8x− 8x3/3
∣∣∣1
−1

= (8− 8/3)− (−8 + 8/3) = 32/3.

Solution 23. (D) Examining the choices, we see S ⊂ Z/10 is a subgroup of an abelian
group. Therefore it still have an additive identity and the operation is commutative. It is
also closed under addition and multiplication. While S does not contain the multiplicative
identity of Z/10, it does have a multiplicative identity. 6 ∈ S is such an identity, as

6x = (5 + 1)x = 5x+ x.

Since x ∈ S are all even, 5x = 0, so 6x = x.

Solution 24. (E) Looking at our answers, we can verify directly that (−5, 1, 1, 0) is a
solution. Any multiple of (−5, 1, 1, 0) is also a solution, which shows that (A), (B), (C), and
(D) are all true – leaving only (E). Another solution, for example, is (0, 2,−8, 5)

Solution 25. (A) An inflection point of h would be a local maximum or minimum of its
derivative h′. One seems to show up around x = −1.5.

Solution 26. (D) Fortunately for us, Z/11 is a field. Doing some basic math, we see
that 6x ≡ 10 and 6y ≡ 10, so 6x + 6y ≡ 9. Additionally, we see that 6 · 2 ≡ 1, so
2 · (6x+ 6y) = x+ y ≡ 7.
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Figure 1. Photo credit Jozef Skokan.

Solution 27. (D) Rewriting this in exponential form, 1 + i =
√
2ei·π/4. This is much easier

to exponentiate. Therefore

(1 + i)10 = 32ei·π/2 = 32i.

Solution 28. (D) Seeing no better option, we can just go down the list. (A) is clearly true,
and we can determine if (B) is true if we remember the appropriate formula:

(f−1)′(x) =
1

f ′(f−1(x))
.

We know f(1) = 4 and f ′(1) = 3. Since f is injective, it is necessary that f−1(4) = 1.
Now, for our reference, g′(x) = 1

2
√
x
, and g′(1) = 1/2. To verify (C),

(fg)′(1) = f ′(1)g(1) + f(1)g′(1) = 3 · 1 + 4 · 1/2 = 5.

To check (D),

(g ◦ f)′(1) = g′(f(1))f ′(1) = g′(4) · 3 =
3

4
̸= 1/2.

Solution 29. (C) It’s probably easiest to draw this out for yourself. The maximum degree
of any vertex is 2, 3, or 4. If there is a vertex of degree 4, then our tree looks like a star.
If the maximum degree of any vertex is 2, then we have a straight line. In the middle case,
we obtain a 3-pointed star to which we attach one more vertex – the choice of branch yields
isomorphic graphs. See Figure 1.

Solution 30. (A) If we have that log x = c · x4 at x = a (and only there), then the graphs
of the functions are tangent at x = a. This is because log x is concave down and cx4 is
concave up, so there would necessarily be another crossing if we had log x > c ·x4 anywhere.
Taking derivatives, we would have that 1/a = c · 4a3. From the original equation we also
have log a = c · a4. A little bit of algebra later, we have c = 1

4a4
, this makes log a = 1/4 so

a = e1/4. Therefore c = 1/4e.

Solution 31. (C) The easiest thing to do is probably to calculate the characteristic poly-
nomial.

det

3− λ 5 3
1 7− λ 3
1 2 8− λ

 = (3− λ) det

[
7− λ 3
2 8− λ

]
− det

[
5 3
2 8− λ

]
+ det

[
5 3

7− λ 3

]
= (3− λ)((7− λ)(8− λ)− 6)− (5(8− λ)− 6) + (15− 3(7− λ))

= −(λ− 2)(λ− 5)(λ− 11) (via some more algebra).

http://www.maths.lse.ac.uk/Personal/jozef/MA210/08sol.pdf
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What works nicely for this problem in particular, though, is examining the matrices A−λI3
for λ ∈ {2, 3, 5}. For λ = 2, we obtain

A− 2 · I3 =

1 5 3
1 5 3
1 2 6


which has two identical rows so clearly has determinant zero. For λ = 5,

A− 5 · I3 =

−2 5 3
1 2 3
1 2 3


we have the same situation. However, for λ = 3,

A− 3 · I3 =

0 5 3
1 4 3
1 2 5


so we can’t conclude immediately that this matrix has determinant zero. But expansion by
minors along the first column is pretty straightforward:

det

0 5 3
1 4 3
1 2 5

 = 0− (25− 6) + (15− 12) = −16 ̸= 0

Hence λ = 3 is not an eigenvalue.

Solution 32. (E) We can sort this out in two steps and apply the fundamental theorem to
each.

d

dx

(∫ 0

x3

et
2

dt+

∫ x4

0

et
2

dt

)
For the first,

d

dx

∫ 0

x3

et
2

dt = − d

dx

∫ x3

0

et
2

dt = −3x2ex
6

For the second,

d

dx

∫ x4

0

et
2

dt = 4x3ex
8

All told, our integral is x2ex
6
(4xex

8−x6 − 3).

Solution 33. (C) We might notice a pattern if we start deriving.

f(x) =
x− 1

ex
= xe−x − e−x =⇒ f ′(x) = −xe−x + e−x + e−x = −f(x) + e−x

=⇒ f ′′(x) = −(−f(x) + e−x)− e−x = f(x)− 2e−x

=⇒ f ′′′(x) = −f(x) + 3e−x

So in general, the nth derivative is going to be (−1)n(f(x) − n · e−x). We want the 19th
derivative, so it’s going to be −(xe−x − e−x − 19e−x) = (20− x)e−x.
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Solution 34. (B) An upper triangular matrix is easily verified to be invertible so long as
its diagonal entries are all nonzero. Specifically, detA is still the product of its diagonal
entries, so (E) and (D) and (A) are all true. (C) can easily be verified to be true by
computing that the bottom-right corner is 25 (the product of upper triangular matrices still
being upper triangular). This leaves (B). (B) can be checked directly to be false: if we let
x = (1, 0, 0, 0, 0), then Ax = x.

Solution 35. (B) We can minimise the function x2 + y2 + z2 = D(x, y, z). We can rewrite
this function in terms of two variables since we know that (on our plane) y = 3 − 2x − 3z,
giving us

D(x, z) = x2 + (3− 2x− 3z)2 + z2.

To find the minimum of the function, we should compute its partial derivatives.

Dx = 10x+ 12z − 12

Dz = 12x+ 20z − 18

A little bit of algebra gives us a solution at x = 3/7 and z = 9/14. This gives enough
information to conclude the answer is (B).

The alternative way to solve this is probably best. The normal vector to this plane is
(2, 1, 3). The closest point to the origin is along this vector, so is at some point (2t, t, 3t).
We can solve for the t which intersects the plane:

2(2t) + t+ 3(3t) = 3 =⇒ 14t = 3 =⇒ t = 3/14.

Plugging this back into (2t, t, 3t) gives the same answer.

Solution 36. (C) This is a good time to remind ourselves WHY the false things are false.
If (A) were true, it would imply that S is a connected set. (B) is certainly not true if S is
a dense set. (C) is the interior of the set S, which is always open. (E) means that S would
have to be closed to begin with.

I’m not sure what (D) is supposed to be.

Solution 37. (C) P 2 = P means that P is projection onto some subspace. There is no
reason to believe that this should be invertible, but it should definitely be diagonalisable
(with eigenbasis some basis of that subspace). III also need not be true if the subspace is
anything proper or nontrivial.

Solution 38. (C) The total angle measure of a 10-gon is 180 ·8 = 1440◦. If the polygon is to
be convex, all angles must be less than 180◦. If we have 5 acute angles, then the remaining
5 angles would have to make up for > 1440− 5 · 90 = 990 degrees. This is impossible to do
and remain convex. If we have 4 acute angles, the remaining 6 angles need to make up for
> 1440− 4 · 90 = 1080 degrees. This is our edge case, so the answer must be 3 acute angles.

Solution 39. (D) This problem is nonsense, far as I can tell. The outer while loop iterates
i from 2 to n, and the inner while loop prints it out (in a weird way).

Solution 40. (C) There’s no reason that ◦ should be commutative. We should be a little
careful about the distributive laws, however. For II, let f(x) = x2, g(x) = 1, and h(x) = −1.
Then f(g + h) = 0, but f ◦ g + f ◦ h = 2. For III, we can verify it directly:

((g + h) ◦ f)(x) = (g + h)(f(x)) = g(f(x)) + h(f(x)) = (g ◦ f)(x) + (h ◦ f)(x).
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By definition, these functions are the same since their values are literally equal. This does
not hold for II:

(f ◦ (g + h)) = f(g(x) + h(x), (f ◦ g + f ◦ h)(x) = f(g(x)) + f(h(x)).

Solution 41. (A) The first plane is determined by the normal vector (1, 1, 1), and the second
determined by (1,−1, 1). Therefore the slope of ℓ is determined by a vector perpendicular
to those, i.e. the cross product.

(1, 1, 1)× (1,−1, 1) = det

i j k
1 1 1
1 −1 1

 = (2, 0,−2).

So that is the slope of ℓ. We need this to be the normal vector for the plane in question, so
it seems that (1, 0,−1) is our best bet (out of the given options).

Solution 42. (E) We are taking the discrete metric on Z+. As such, every singleton set
is open. Moreover, since Z+ is countable, every set is open. Therefore every set is closed
as well (having open complement). Finally, suppose f : Z+ → X is any map of topological
spaces. Then every f−1(Y ) is open for Y ⊂ X (whether Y is open or not) so f is continuous.

Solution 43. (A) We know that

dy

dx
=

dy
dt
dx
dt

.

To remind you, this follows from the chain rule and rearranging:

dy

dt
=

dy

dx
· dx
dt

Using the same trick, we have1

d2y

dx2
=

d

dx

dy

dx
=

d dy
dx

dt

/dx

dt
.

Therefore let us go step by step.

dx

dt
= 2t+ 2 = 2(t+ 1),

dy

dt
= 12t3 + 12t2 = 12t2(t+ 1).

This makes dy/dx = 6t2. Taking the derivative of that, we get 12t, and so we finally obtain

d2y

dx2
=

12t

2t+ 2
=

6t

t+ 1
.

Now, the point (8, 80) corresponds to t = 2. Plugging that in, we get 12/3 = 4.

Solution 44. (B) Putting it in simpler terms,

dy

dx
+ xy = x =⇒ dy

dx
= x(1− y) =⇒ dy

1− y
= x dx.

Integrating both sides, we obtain

− log(1− y) = x2/2 + C ′ =⇒ 1− y = Ce−x2/2 =⇒ y = 1− Ce−x2/2.

Solving the initial value problem gives C = 2. Furthermore, as x → −∞, the second term
above vanishes so we get 1 in the limit.

1Notation credit to https://www.math.hmc.edu/calculus/tutorials/parametric_eq/.

https://www.math.hmc.edu/calculus/tutorials/parametric_eq/
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Solution 45. (C) Certainly our solutions are concentrated in [0, 1]. We know that every
2π/97 units in x, we get another period of cos(97x), and each period must meet y = x twice.
Therefore there are

1

2π/97
=

97

2π
≈ 97

6.3
≈ 15

periods in [0, 1] and about 30 meetings. There’s only one answer in that range, so we’ll stick
with it.

Solution 46. (C) A very basic related rates problem. Let h be the height of the ladder
from the ground and ℓ the distance away from the wall. This gives the relation h2+ ℓ2 = 81.
We are also given dℓ/dt = 2. At the point when the top of the ladder is 3 metres above the
ground, the bottom of the ladder is

√
81− 9 = 6

√
2 away. Taking a derivative,

2h · dh
dt

+ 2ℓ
dℓ

dt
= 0 =⇒ 2 · 3 · dh

dt
+ 2 · 6

√
2 · 2 = 0.

A little bit of math later shows that dh/dt = −4
√
2, giving our answer.

Solution 47. (B) A classic kind of problem. We are clearly continuous and differentiable
at 0. Anywhere else, near a rational number there is an irrational number and vice versa.
Therefore there can be no continuity anywhere but at 0, and hence no differentiability either.

Solution 48. (B) It would be good to recall the formula for the directional derivative. We
take the gradient of the function then take its scalar product with the normalised vector in
the direction we want. To begin,

∇g = (6xy, 3x2, 1).

At the point (0, 0, π), we have ∇g = (0, 0, 1). That works out pretty well for us. The
normalised version of the vector (1, 2, 3) is (1/

√
14, 2/

√
14, 3/

√
14). Dotting this with (0, 0, 1)

gives 3/
√
14, and since

√
14 = 3.5 or so our answer should be closer to 0.8 than 0.2.

Solution 49. (B) The greatest order is given by the product of a 2-cycle and a 3-cycle acting
on disjoint elements. That gives order 6.

Solution 50. (D) The sum of the ideals is still an ideal: it is clearly closed under addition
(using commutativity of addition), and still under left and right multiplication due to the
distributive property. The intersection of ideals is still an ideal, which is not too hard to
work out. The product of ideals, however, need not be closed under addition. Consider, for
example, R = Z[X], U = (2, X), and V = (3, X) (the ideals generated by two elements).
Then we know that −2X ∈ U · V and 3X ∈ U · V , and hence we should expect 3X − 2X =
X ∈ U · V . However, there is no way to get X as the product of an element of U and an
element of V .

Solution 51. (E) The basis (C) is not orthogonal and (D) is not normal, so we can rule
those out. Moving on to the matrix itself, it would be nice to know its rank. We can throw
out the second column, since it is the negation of the first, but it is not immediately clear if
the matrix is rank 2 or rank 3.

A little bit of math shows that the remaining 3× 3 matrix has determinant 0, so the rank
of our column space is 2. That leaves only (A) and (E), but (A) cannot be correct. Our
column space contains vectors that have nonzero third entry, so cannot lie in the span of
that basis.
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Alternatively, one might notice that C4 = C3 − 5C1 = C3 + 5C2, where these denote the
columns of the original matrix. That also gives us rank = 2, and we can make the conclusion
as above.

Solution 52. (A) Suppose we order the classes to be taught, and know in advance we
will give the first two to the first professor, etc. There are 20! ways to order these classes.
However, the arrangement is the same if we do pairwise swaps of 1-2, 3-4, etc. There are 10
pairs and each has 2 orientations, so there are 210 essentially the same arrangements.

Solution 53. (A) If we recall the formula for differentiation under the integral, here is the
general way:

d

dx

∫ b(x)

a(x)

f(x, y) dy = f(x, b(x))b′(x)− f(x, a(x))a′(x) +

∫ b(x)

a(x)

∂

∂x
f(x, y) dy.

Looking at our situation, it is simplified greatly since a(x) = 0 and b(x) = x. Let h(x, y) =
f(y)(y − x) for ease of notation. Then

g′(x) = h(x, x) · 1− h(x, 0) · 0 +
∫ x

0

∂

∂x
h(x, y) dy

= 0− 0 +

∫ x

0

−f(y) dy =

∫ x

0

−f(x) dy

Then g′′(x) = −f(x) and g′′′(x) = −f ′(x). Therefore f needs only one derivative.

Solution 54. (C) We can visualise this as a rectangle in the xy-plane. Consider [0, 3]× [0, 4]
there. The triangle bounded by the line y = x (and the sides of the rectangle) is all points
(x, y) such that x > y. This triangle has an area of 4.5, and the rectangle an area of 12.
Then the rest of the points (where x < y) contribute an area of 7.5. Hence the probability
is 7.5/12 = 5/8.

Solution 55. (E) We can use some partial fractions followed up by u-substitution. First,

eax − ebx

(1 + eax)(1 + ebx)
=

1

1 + ebx
− 1

1 + eax
.

Now, consider ∫ ∞

0

dx

1 + ebx
.

Let u = ebx. Then du = b · ebx dx, so du

b · u
= dx. Replacing this in, we need to solve

1

b

∫ ∞

1

du

u(1 + u)
.

This requires some more partial fractions.

1

u(u+ 1)
=

1

u
− 1

u+ 1
.

Putting all that together,∫ ∞

0

dx

1 + ebx
=

1

b
lim
R→∞

(log u− log(u+ 1))
∣∣∣R
1
=

1

b
lim
R→∞

log

(
R

R + 1

)
− log

(
1

2

)
=

log 2

b
.

That makes our other quantity log 2/a. A little more math gives the answer.
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Solution 56. (D) I is certainly true, as it is easy to verify that limx→∞
log x√

x
= 0, so the

function achieves some maximum on x ≥ 1. Take C to be that maximum.
If we recall the formula for the landhand side for II,

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
≈ n3.

As such, no constant C is going to do the trick for all n ∈ N.
III brings to mind the power series for sinx:

sinx = x− x3

3!
+

x5

5!
− · · ·

Then | sinx− x| is the error of the first order Taylor approximation to sinx, which is given
in terms of the next term, which indeed is related to x3. The specific formula is, for the
Taylor series of order n for f(x) centred at x = a,

|En(x)| ≤
M · |x− a|n+1

(n+ 1)!
,

where M is an upper bound for |f (n+1)(x)| on the interval between a and x. For us, we take
n = 2 and a = 0, and we know that |f (3)(x)| = cosx attains a maximum of 1. This gives
C = 1

3!
, as expected.

Solution 57. (C) I is true, since limn→∞ xn must be bounded between 0 and limn→∞ 1/n = 0.
Unfortunately, xn does not converge inside (0, 1). There is no reason therefore that f(xn)
should be a convergent sequence – suppose that f(x) = 1/x, so that f(xn) is certainly not
Cauchy. However, if g is uniformly continuous, then g extends to a continuous function on
[0, 1]. Now xn is a convergent sequence, so limn→∞ g(xn) = g(limn→∞ xn) = g(0) exists.

Solution 58. (B) For our curve r(θ), the arc length from θ to r(0) = (5, 0, 0) is given by∫ θ

0

∥r′(t)∥ dt.

To find what we are actually integrating over,

r′(θ) = (−5 sin θ, 5 cos θ, 1) =⇒ ∥r′(θ)∥ =
√

25 sin2 θ + 25 cos2 θ + 1 =
√
26.

Then L(θ) =
√
26 · θ precisely, so θ0 =

√
26. Computing D(θ) is easy enough:

D(θ) =
√

25 cos2 θ + 25 sin2 θ + θ2 =
√
25 + θ2.

Plugging in θ0 gives
√
51 as our answer.

Solution 59. (E) Out of all these options, (C) is the trickiest one to think about. There is a
theorem that if B is a nilpotent matrix (i.e. Bk = 0 for some k), then I −B is invertible. In
the case of (C), let B = I −A, so that I − (I −A) = A is invertible. This makes (C) a valid
criterion. (E) is the only one which does not work – suppose we consider A the matrix giving
projection onto the xy-plane. Then the vectors (1, 0, 0), (0, 1, 0), and (1, 1, 1) are linearly
independent but all map to nonzero vectors.

Solution 60. (D) While it looks like this is the opposite of continuity, that should read
‘there exists ε > 0’. What the statement says is that we not only get arbitrarily far away
from f(1), but we must for all x sufficiently far away from 1. So as |x| gets very large, so
does |f(x)|.
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Solution 61. (E) We can set this up as a differential equation. Let s denote the amount of
salt in the tank, and let t denote time. We have the initial condition of s(0) = 3. s′(t) depends
on two factors: the salt flowing in and the salt flowing out. The salt flows in constantly at
a rate of 0.08 grams per minute, and the salt flows out at a rate of 4 · (s/100) = s/25 grams
per minute. Therefore

s′(t) =
ds

dt
= 0.08− s(t)/25 =⇒ ds

dt
= 0.04(2− s) =⇒ ds

2− s
= 0.04 dt.

Doing the usual calculus,

− log(2− s) = 0.04t+ C ′ =⇒ 2− s = Ce−0.04t =⇒ s(t) = 2− Ce−0.04t.

The initial condition tells us that C = −1, so s(t) = 2 + e−0.04t. Plugging in t = 100 gives
our answer.

Solution 62. (C) This question greatly depends on the fact that we are in two dimensions.
The complement of S within [0, 1]×[0, 1] is given by all points with both coordinates rational.
This set is neither closed nor open, and so neither is its complement (and hence neither is
S). It is certainly not totally disconnected, and compact would imply closed and bounded
(given that we are in Euclidean space).

It is, in fact, connected. We can prove this because it is path connected. Suppose we
have two points (x0, y0) and (x1, y1). Without loss of generality, suppose x0 is irrational. We
can travel straight from (x0, y0) to (x0, y1). If y1 is irrational, then we can travel straight to
(x1, y1). If y1 is rational, then x1 must be irrational. If y0 was irrational to begin with then
we can travel (x0, y0) to (x1, y0) to (x1, y1) in a corner.
However, if y0 is rational, then we should take (x0, y0) to (x0, z) for some irrational z, then

(x0, z) to (x1, z) and finally to (x1, y1). Being path connected, S is connected as well.

Solution 63. (E) If the supremum is positive, it will be the product of the two greatest
positive numbers in A and B or the product of the two least negative numbers in A and B.
That means we should look for sup · sup or inf · inf. However, it might be the case that the
supremum is non-positive: this happens if B contains only negative numbers and A contains
only positive numbers. In that case, the greatest value in A ·B (i.e. the negative number of
smallest magnitude) will be attained by the least (positive) element of A and the greatest
(negative) element of B, giving us our third option: inf A · supB.

Solution 64. (E) The surface given is the top half of the unit sphere in R3. Don’t do this
the hard way – use the divergence theorem. Consider the unit ball B ⊂ R3 and its surface
∂B. Then the divergence theorem tells us that∫∫

∂B

F⃗ · dS⃗ =

∫∫∫
B

div F⃗ dV.

The righthand side is much more appealing. The divergence of F is just 3, so the righthand
integral is the volume of the unit ball times 3, i.e. 4π. Because the vector field F⃗ is symmetric
on the z-axis, we have that ∫∫

∂B

F⃗ · dS⃗ = 2

∫∫
S

F⃗ · dS⃗ = 4π

so dividing by 2 gets us the answer.



SOLUTION GUIDE TO MATH GRE FORM GR1268 13

Solution 65. (E) The real and imaginary parts of an analytic function must satisfy the
Cauchy-Riemann equations. That is,

∂f

∂x
=

∂g

∂y
,

∂f

∂y
= −∂g

∂x
.

Renaming things for our benefit, let our function be h(x, y) = f(x, y) + i · g(x, y). This tells
us that

∂g

∂y
= ex sin y,

∂g

∂x
= −ex cos y.

This gives us the candidate g(x, y) = −ex cos y +C. Luckily for us, we needn’t worry about
+C when taking g(3, 2)− g(1, 2) as it will subtract itself out. Hence

g(3, 2)− g(1, 2) = −e3 cos 2 + e cos 2 = (e− e3) cos 2.

Solution 66. (B) We need to pick elements of order 16 in Z/17×. It is easy to rule out
16 ≡ −1, since −1 has order 2. We see that 52 = 25 ≡ 8, so there’s no way that 8 can be a
generator. We just need to verify that the order of 5 is more than 8, so we can check 58:

54 = 82 = 64 ≡ −4, 58 = (−4)2 = 16 ̸= 1.

That makes 5 a generator.


